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Abstract
Resuming the theme of a previous paper (Szafraniec F H 2001 Math. Nachtr. at
press) we show that any abstract creation (or annihilation) operator is in duality
with the finite difference one acting in �2. This duality relation is generic and its
spatial character allows both agents to be identified within the class of weighted
shifts.

PACS numbers: 02.10.De, 03.65.Ge

1. Let H be a separable (but infinite-dimensional) complex Hilbert space. Given an
orthonormal basis {en}∞n=0 in H and a sequence {σn}∞n=0 ⊂ (0,+∞) of weights, we say that
an operator S is a weighted shift (with respect to {en}∞n=0 and with the weights {σn}∞n=0) if
Sen = σnen+1, for n = 0, 1, . . . and lin{en}∞n=0 is a core of S (the latter means S|{en}∞n=0

= S̄,
with the ‘bar’ standing for the closure; since the left-hand side is always an operator, S must
necessarily be closable). Likewise, T is called a backward weighted shift if T en = σn−1en−1,
for n = 0, 1, . . . and lin{en}∞n=0 is a core of T . Now we can say S is a creation operator with
respect to {en}∞n=0 if it is a weighted shift with respect to {en}∞n=0 with the weight sequence
{√n + 1}∞n=0 and T is an annihilation operator with respect to {en}∞n=0 if it is a backward
weighted shift with respect to {en}∞n=0 with the same weight sequence {√n + 1}∞n=0. Thus,
more explicitly, they act as

Sen =
√
n + 1 en+1 T en = √

n en−1 n = 0, 1, . . . .

It is clear that with S being a weighted shift and T being a backward weighted shift, both with
respect to the same basis and with the same weight sequence, lin{en}∞n=0 is their core and

T ⊂ S∗.

It is because of this that we restrict ourselves exclusively to the creation operator, from which
the annihilation operator can inherit its properties. Additionally, the two other members of the
family, the number operator and the Hamiltonian, can also be derived from the creation operator.
This may sound like a blasphemy to physicists but is a result, in fact, of the physicists having
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generously left all the details to the mathematicians; this is a matter of course, fortunately.
Enjoying the benefits of this fact (instead of working again with formal relations so as to
obtain, sooner or later, their representations), and knowing already that everything happens
within a Hilbert space environment, we can try to build up an operator theory around the
quantum harmonic oscillator (this is done in [10] as a result of the antecedent results quoted
therein).

2. The models are, of course, of great importance, some of which are detailed below.

(A) Let H = L2(R). Consider the Hermite functions

hn = 2−n/2(n!)−1/2π−1/4e−x2/2Hn

with Hn, the n-Hermite polynomial, defined as

Hn(x) = (−1)nex
2 d n

dxn
e−x2

.

Then

S = 1√
2

(
x − d

dx

)
T = 1√

2

(
x +

d

dx

)

with D(S) = D(T ) df= lin{hn; n = 0, 1, . . .} being the creation and annihilation operators,
respectively. This is the very classical model.

(B) Now H = A2(C, π−1 exp(−|z|2) dx dy), S = ‘multiplication by Z’, D(S) = C[Z]. This
is the Segal–Bargmann model [1], which is also classical.

(C) Here is a discrete model. Introduce in H = �2 a basis composed of Charlier sequences as
follows. First the Charlier polynomials, {C(a)n }∞n=0, a > 0, are determined by

e−az(1 + z)x =
∞∑
n=0

C(a)n (x)
zn

n!
.

They are orthogonal with respect to a nonnegative integer-supported measure according
to

∞∑
x=0

C(a)m (x)C
(a)
n (x)

e−aax

x!
= δmna

nn! m, n = 0, 1, . . . .

Define the Charlier sequences c(a)n , n = 0, 1, . . . , as

c(a)n (x) = a− n
2 (n!)−

1
2C(a)n (x)e

− a
2 a

x
2 (x!)−

1
2 x = 0, 1, . . . .

The operators Sa and Ta defined as

(Saf )(x) =
{ √

x f (x − 1)− √
af (x) x = 1, 2, . . .

−√
a f (x) x = 0

(Taf )(x) =
√
x + 1 f (x + 1)− √

a f (x) x = 0, 1, . . .

for f ∈ D(Sa) = D(Ta) df= lin{c(a)n ; n = 0, 1, . . .} (where c(a)n are Charlier sequences) are
the creation and annihilation ones, respectively (see [6] for details regarding this model).
An inductive-limit procedure can be implemented (cf [9]) so as to approach (A) using the
present model.
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(D) Let 0 < A < 1. Now H is the Hilbert space X (A) of entire functions f such that∫
R2

|f (x + iy)|2 exp

[
Ax2 − 1

A
y2

]
dx dy < ∞.

Defining

h(A)n (z) = bn(A)
−1/2e−z2/2Hn(z) z ∈ C

where Hn is a Hermite polynomial which is now a complex variable, we get, by the
orthogonality relation of [2], an orthonormal basis in X (A). The operators S(A) and T (A)

defined as (cf [7])

S(A)f (z) =
√

1 − A
2(1 + A)

[zf (z)− f ′(z)]

T (A)f (z) =
√

1 + A

2(1 − A) [zf (z) + f ′(z)]

z ∈ C f ∈ lin{h(A)n }∞n=0

are the creation and annihilation operators with respect to the basis {h(A)n }∞n=0. An
interesting feature of this model is that it provides a kind of interpolating scale between
the very classical model (A), when A → 0+, and the Segal–Bargmann model (B), here
A → 1− (see [7] for details). Notice that, unlike in model (B), the measure involved in
this case is not rotationally invariant.

3. Since the sequence {c(a)n }∞n=0 of the Charlier sequences satisfies the relation

(−1)xc(a)x (n) = (−1)nc(a)n (x) x, n = 0, 1, . . . (1)

one can construct a family according to [8] (and also [11], proposition 2) of new bases in a
Hilbert space starting from the original space as follows below.

Fact A. Let {en}∞n=0 be a basis in a separable Hilbert space H. Then

e(a)n
df=

∞∑
k=0

c
(a)
k (n)ek n = 0, 1, . . . (2)

defines a basis {e(a)n }∞n=0 in H. Moreover, {en}∞n=0 can be recaptured from {e(a)n }∞n=0 by the
formula

en =
∞∑
k=0

c(a)n (k)e
(a)
k n = 0, 1, . . . .

The creation operator satisfies the (formal) commutation relation

S∗S − SS∗ = I (3)

although the way back is not automatic (even if the precise meaning of (3) is clear); for this we
refer to [10] where, among other things, subnormality gets involved. The following1, however,
is a rather trivial observation.

Fact B. If S satisfies (3), then so does S − λ for any λ ∈ C.
However, it may be that neither S nor S − λ is a creation operator. The subsequent result ([4],
and for its Weyl form see [5]) is related to this question.

1 Some physically oriented consequences of this can be found in [3].
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Fact C. Let S be a closed operator. If S as well as S − λ are weighted shifts with some
λ ∈ C \ {0}, then they are both multiplies of the creation operator.

A version of this which makes the bases involved transparent is in [11].

Fact D. Let S be a closed operator.

(a) If S is a creation operator with respect to {en}∞n=0, then for any a > 0 the operator S+
√
a I

is a creation operator with respect to {e(a)n }∞n=0 defined by (2).

Conversely,

(b) if S is a weighted shift with respect to a basis {en}∞n=0 and for some a > 0 the operator
S +

√
a I is a weighted shift with respect to some basis {f (a)n }∞n=0, then S is a creation

operator with respect to {en}∞n=0 and fn = en as well as f (a)n = e(a)n , n = 0, 1, . . . , where
the e(a)n values are given as in (2) (accordingly S+

√
a I is a creation operator with respect

to {e(a)n }∞n=0 for any a > 0).

4. Let Sa be the creation operator for model (C). This means that

√
n + 1 c(a)n+1(x) =

{ √
x c(a)n (x − 1)− √

a c(a)n (x) x � 1
−√

a c(a)n (x) x = 0
(4)

and, by (1)

√
n + 1 c(a)x (n + 1) =

{ √
x c

(a)
x−1(n) +

√
a c(a)x (n) x � 1√

a c(a)x (n) x = 0.
(5)

The twin relation coming from the annihilation operator is
√
n c(a)x (n− 1) =

√
x + 1 c(a)x+1(n) +

√
a cxn.

We can complete the above with the following theorem.

Theorem 1. Let S be a closed creation operator with respect to {en}∞n=0 and let Sa be the
creation operator defined in model (C). Then2 for any a > 0

(−1)n(S +
√
a I)e(a)n =

∞∑
k=0

(−1)k+1(Sac
(a)
n )(k)ek

(−1)n(S∗ +
√
a I)e(a)n =

∞∑
k=0

(−1)k+1(S∗
a c
(a)
n )(k)ek

n = 0, 1, . . . (6)

where the e(a)n values are defined by (2).

Relation (6) can be viewed as just a kind of duality between an arbitrary creation
(annihilation, respectively) operator and a discrete one.

Proof. Take N ∈ N. Using the fact that both S and Sa are creation operators, due to (5), we
have

(S +
√
a I)

N∑
k=0

c
(a)
k (n)ek =

N∑
k=0

c
(a)
k (n)(S +

√
a I)ek

=
N∑
k=0

c
(a)
k (n)

√
k + 1 ek+1 +

√
a

N∑
k=0

c
(a)
k (n)ek

2 If ξ ∈ �2 we write ξ(n) for its n-coordinate.
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=
N∑
k=1

c
(a)
k−1(n)

√
k ek +

√
a

N∑
k=0

c
(a)
k (n)ek + c(a)N

√
N + 1 eN+1

=
N∑
k=0

c
(a)
k (n + 1)

√
n + 1 ek + c(a)N

√
N + 1 eN+1

=
N∑
k=0

(−1)n−k−1c
(a)
n+1(k)

√
n + 1 ek + c(a)N

√
N + 1 eN+1

= (−1)n
∞∑
k=0

(−1)k+1(Sac
(a)
n )(k)ek + c(a)N

√
N + 1 eN+1.

Since S is closed and c(a)N
√
N + 1 → 0 asN → ∞ (this is due to {c(a)N

√
N + 1}∞N=0 ∈ �2 being

in the range of Sa) every e(a)n is in the domain of S and, consequently, the first of (6) holds.
The other can be deduced in the same way using (4) in place of (5). �

The point is that we have a kind of converse to the above; actually there are a couple of
versions which we itemize as separate results. In all of them we assume that

S is closed and {en}∞n=0, {e(a)n }∞n=0 ⊂ D(S).

Theorem 2. Suppose S is a weighted shift with respect to {en}∞n=0 and S� is a weighted shift
with respect to {c(a)n }∞n=0. If for some a > 0 either

(−1)n(S +
√
a I)e(a)n =

∞∑
k=0

(−1)k+1(S� c
(a)
n )(k)ek n = 0, 1, . . .

or

(−1)n(S∗ +
√
a I)e(a)n =

∞∑
k=0

(−1)k+1(S∗
� c

(a)
n )(k)ek n = 0, 1, . . .

then S is a creation operator with respect to {en}∞n=0 and S� is a creation operator with respect
to {c(a)n }∞n=0 (that is, S̄� = S̄a).

Proof. Suppose the first of the duality relations hold. Let {σn}∞n=0 be the weight sequence of
S and {τn}∞n=0 is that of S�. Then by (1) we have

τn

∞∑
k=0

c
(a)
k (n + 1)ek =

∞∑
k=0

(−1)n+1−kτnc
(a)
n+1(k)ek =

∞∑
k=0

(−1)n+1−k(S� c
(a)
n )(k)ek

= (S +
√
a I)

∞∑
k=0

c
(a)
k (n)ek =

∞∑
k=0

(σkc
(a)
k (n)ek+1 +

√
a c

(a)
k (n)ek)

=
∞∑
k=1

σk−1c
(a)
k−1(n)ek +

√
a

∞∑
k=0

c
(a)
k (n)ek.

Equating the coefficients of ek we get

τnc
(a)
k (n + 1) =

{
σk−1c

(a)
k−1(n) +

√
a c

(a)
k (n) k = 1, 2, . . .√

a ck(n) k = 0

and comparing this with (5) enables us to get the correct result. �
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Theorem 3. Suppose S is a weighted shift with respect to some basis {fn}∞n=0 with f0 = e0. If
for some a > 0 either

(−1)n(S +
√
a I)e(a)n =

∞∑
k=0

(−1)k+1(Sac
(a)
n )(k)ek n = 0, 1, . . .

or

(−1)n(S∗ +
√
a I)e(a)n =

∞∑
k=0

(−1)k+1(S∗
a c
(a)
n )(k)ek n = 0, 1, . . .

where Sa is the creation operator of (C), then fn = en, n = 0, 1, . . . and S is the creation
operator.
Proof. Now consider the first possibility; insert into it ek = ∑∞

s=0 ξ
(k)
s fk and perform the

shifting. What we get, via (1) and (5), is
∞∑
s=1

∞∑
k=0

c
(a)
k (n)(σsξ

(k)
s−1 +

√
a ξ (k)s )fs +

√
a

∞∑
k=0

c
(a)
k (n)ξ

(k)
0 f0 =

∞∑
s=0

( ∞∑
k=o

√
k + 1 c(a)k (n)ξ

(k)
s

)
fs

where {σn}∞n=0 is the sequence of weights for S. Equating coefficients at fs gives
√
k + 1 ξ (k+1)

s =
{

0 s = 0

σsξ
(k)
s−1 s = 1, 2, . . . .

Since ξ (0)k = δk,0 for k = 0, 1, . . . (f0 = e0) we get ξ (k)s = σ ′
kδk,s , which means that S is a

weighted shift with respect to {en}∞n=0. This brings us to theorem 1. �
Theorem 4. Suppose S� is a weighted shift in �2 with respect to some basis {dn}∞n=0. If S is a
creation operator with respect to {en}∞n=0 as well as for some a > 0 d0 = c

(a)
0 and either

(−1)n(S +
√
a I)e(a)n =

∞∑
k=0

(−1)k+1(Sac
(a)
n )(k)ek n = 0, 1, . . .

or

(−1)n(S∗ +
√
a I)e(a)n =

∞∑
k=0

(−1)k+1(S∗
a c
(a)
n )(k)ek n = 0, 1, . . .

then dn = c(a)n , n = 0, 1, . . . and S� is the creation operator of model (C); that is, S̄� = S̄a .

The proof uses the same sort of argument as that of 2.
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